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Abstract. It is a well known fact that the Dirac and Kemmer—Duffin equations are the Bhabha
equations. We use the method based on the de Sitter grouf, 4) to show that the Rarita—
Schwinger and Bargmann-Wigner equations can also be treated as the Bhabha equations with
some subsidiary conditions. This demonstrates that the de Sitter group can be considered as
a significant auxiliary group which provides a unified approach to the equations of relativistic
quantum theory.

1. Introduction

More than 50 years ago Bhabha wrote a paper ‘Relativistic wave equations for the
elementary particles’, where a new class of relativistic wave equations was proposed
(Bhabha 1945). Bhabha introduced a class of multiparticle equations which appeared to
be related to the de Sitter gro{ (1, 4). The same equations were previously introduced
and analysed by Lubanski (1942a,b), but in the current physical literature the equations
connected with the de Sitter group are known as Bhabha equations.

Until the Lubanski and Bhabha works different single particle equations were proposed
and investigated (Dirac 1936, Duffin 1938, Kemmer 1939, Fierz 1939, Rarita and Schwinger
1941). Equations proposed by Lubanski and Bhabha were multiparticle equations. It is
interesting to note that the theory of multiparticle higher-spin equations is still actually
due to the presence of difficulties in higher-spin single particle theories in the presence of
interactions (Velo and Zwanziger 1969a, b). Several attempts have been made to overcome
these difficulties, however, the results obtained have yet to solve the problem (for our efforts
on the subject see, for example, Saaal 1993, Loideet al 1992, 1994, Saagt al 1994).

In multiparticle theories similar acausality difficulties may be avoided. Moreover, different
new field theoretical models, such as string and supersymmetrical models reduce to the
investigation of higher-spin fields and wave equations.

In the present paper we take another look at the relativistic wave equations proposed
by Bhabha and Lubanski, and discuss their relation with the de Sitter group. It should be
mentioned that Bhabha equations were widely discussed in the 1970s (Krajcik and Nieto
1974, 1975, 1976a,b, 1977). Our treatment here is somewhat different from the previous
ones and is based mainly on the de Sitter groupi{KL969, Koiv et al 1970, Loide 1972,

Kdiv and Saar 1974, Loide 1975). We demonstrate that the de Sitter group should be treated
as an important auxiliary group providing a unified approach to the standard equations of
relativistic quantum field theory.

0305-4470/97/114005+13$19.5@C) 1997 IOP Publishing Ltd 4005
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We discuss the general relativistic wave equation

(i9,8" —m)y(x) =0 (1.1)

where ¥/ (x) is some finite-dimensional Lorentz field and the Lorentz generaitYsare
expressed via thg* matrices in the following form:

SHY — kz[ﬂ“, ,BV] (12)

wherek is some numerical coefficient.

The general theory of equation (1.1) was rather well developed in the 1940s and it
has been discussed in many textbooks (Corson 1952, Getfaall1963). However, the
application of the general theory to higher-spin particles is not simple and therefore the
higher-spin wave equations proposed so far are not always correct (Loide 1984, 1985). For
this reason some new methods have been proposed which have allowed us to deal with
higher-spin wave equations. In this paper we shall discuss one important special class of
equation (1.1)—the Bhabha relativistic wave equations.

The most important feature of the equations satisfying (1.2) is a very close relation with
the de Sitter groug O (1, 4). Indeed, if we introduce the operators

S = kg (1.3)
the generators*® and S*¥ satisfy the commutation relations of the de Sitter algebra:

[S/LS’ Sv5] — Quv

[S;w’ SpS] — gvau5 _ g/l.,OSvE) (14)

[S"”, SﬂU] — gva;w + g;vap _ gupsva _ ngup.

As we shall see later, the wavefunctign(x) is connected with the representations
of the de Sitter groug O (1, 4). We consider only finite-dimensional representations and
demonstrate that besides the Dirac and the Kemmer—Duffin equations which are the Bhabha
equations, also the Rarita—Schwinger and the Bargmann—Wigner equations can be given in
the Bhabha form with some subsidiary conditions. The corresponding funafignsare
finite-dimensional representations of the de Sitter group.

It is interesting to note that in physics the de Sitter group plays quite an important role,
since in many problems one must use the de Sitter group and its representations, in some
cases in a four-dimensional, in some cases in a five-dimensional form. Here we note some
important mathematical results, which connect Poiacard de Sitter groups—in the theory
of contractions and deformations of groups and algebras it has been proved that contraction
of the de Sitter group is the Poinéagroup (Inoii and Wigner 1953) and from deformations
of the Poincag group one obtains the de Sitter group (Levy-Nahas 1967, Lyakhovsky 1969).
From these mathematical results it follows that two groups—the P&rgraup, which is
the most important symmetry group in physics, and the de Sitter group are very closely
related. The physical origin of such relations is not yet clear, but we hope it will get some
clarification in the future.

The paper is organized as follows. In section 2, the general structure of Bhabha equations
is clarified. In sections 3 and 4, the Rarita—Schwinger equation and its Bhabha structure is
studied. In section 5, the Bargmann—Wigner equation is discussed.

2. Mass and spin of the Bhabha equations

We start with a few words about finite-dimensional representations of the de Sitter group
(see, for example, Antoine and Speiser, 1964a,b). Each finite-dimensional representation
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Figure 1. Weight diagram for the representatiom, 7).

can be characterized by two integers or half-odd integessn,), satisfyingny > np. To
each representatiofy, n,) corresponds the octagonal weight diagram (figure 1).
The weights &, o) are determined from the eigenvalue problem of Cartan subalgebra:

; 121/, ’ (2.1)
iS22y = oy
The components of each weiglit, o) —h ando may both have values;, ny—1, ..., —n1+

1, —n4, but only such values fok ando are allowed, which give the weight point inside
the octagonal weight diagram. The edge points of the weight diagram are single, the inner
points are in general multiple. The multiplicity of weight points can be calculatdiiv(K
1967), but for lower representations the multiplicity of weight points can be found from the
simple symmetry considerations of the weight diagram—the weight pdints) @nd @, &)
have the same multiplicity.

Next we apply the results to the Bhabha equation (1.1) corresponding to some irreducible
representatioriny, ny) of the de Sitter group. For simplicity we use further the momentum
representation

(puB" —m)y(p) = 0. (2.2)

Equation (2.2), in general, describes states with different mass and spin. In order to establish
the mass and spin spectrum of a given equation we introduce new operators

$"%(p) = €,8"

(2.3)
S (p) = € pe"s SP7
where
60M _ Pu
VP2
and

g L v v
gole! ey = g

V/ p? is the mass of a given state.
It is easy to verify that the introduced generators also satisfy the commutation relations
of the de Sitter group (1.4).
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Since S*° = kp*, one can write (2.2) as

(puS"® —km)y =0 (2.4)
and by using (2.3), it turns into the eigenvalue problem
S®(p)¥ = hy (23)
where
km
h=—— (2.6)

N
The spin projection is determined from the eigenvalue problem
iSY2(p)y = oy (2.7

In the case of a finite-dimensional irreducible representatiann,) one can obtain the
mass and spin projection spectrum. The mass of states is determined from

km
2 = . 2.8
vp 5 (2.8)
Naturally, 7 = 0 is excluded due te: # 0. In general,
\/»2 km  km —km
pc= , s
nyg ni— 1 ni
o=ny,n1—1,...,—nq.

From the given results it follows that in general the Bhabha equation describes particles
with several mass and spin. If one single state with a given mass and spin is needed, some
auxiliary conditions must be applied.

From the well known equations, the Dirac equation and Kemmer—Duffin equations are
Bhabha equations. The Dirac equation corresponds to the represer(l%t@n Spin%
is described by the nonzero eigenvalues= i%. The Kemmer—Duffin spin 0 equation
corresponds to the representati@h 0), spin O is described by the nonzero eigenvalues
h = 1. The Kemmer—Duffin spin 1 equation corresponds to the representatitnand
now spin 1 is described by the eigenvaldes- +1.

In the following sections we will show that the Rarita—Schwinger and the Bargmann—
Wigner equations are also connected with the de Sitter group and can be treated as Bhabha
equations with some auxiliary conditions.

3. Rarita—Schwinger sping equation

The Rarita—Schwinger equation for a particle with spin= 3 has a form (Rarita and

2
Schwinger 1941)

(puy" —m)y® =0 (3.1)
with the additional condition
Ye¥® = 0. 3.2

Here ¢ is a vector-bispinor field. Since vector-bispinor is also the irreducible
representatior(g, %) of the de Sitter group, one can supplement the Lorentz generators
S*v with generatorss“® generating the de Sitter algebra.

For a vector-bispinor the Lorentz generat§td are

SH =T x E + I x %y“y” (3.3)
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where E and I, are unit operators acting on spinor and vector indices. The genevators
are

(I/LV)[X,S — g/L[lgvﬁ _ gvag/tﬁ‘ (34)
de Sitter generator§*®> may be repsesented in the form
(8"9)% = 3[y"g%s — L+ Dg"yp — A =Dy g"s + vy vsl. (3.5)

Now we will prove that the Rarita—Schwinger equation is equivalent to the Bhabha
equation

PuSHSY = %w (3.6)

with an additional condition (3.2). From figure 2 we can see that there are nonzero
eigenvaluesh = :t% andh = :I:g. The eigenvalueg = :I:% describe states with spin
g and spin%. The mass of the corresponding states is equat.toEigenvalues: = i%
describe spin% with the massn/3.
Equation (3.6) is equivalent to the eigenvalue problem

S"(p) = hy 3.7)
where

(%)% s = 3T0&"s — v ¥p) + 3(L = (™ yp — y*e%) (3.8)
andT# = gH,y".

Let us consider the eigenfunctiah which satisfies (3.2)y,¢¥* = 0. From
i

e%S(p)" = 5 (%" = yp)
we obtain

ST ) = hay). (3.9)
Sincel'* satisfy{I'*, '’} = 2g"”, eigenvalues of ® are+1. From (3.9) it therefore follows
thate%,yv* =0, i.e.

pu¥" =0. (3.10)
For the wavefunctiony satisfying (3.2) and (3.10) from (3.7) we obtain that

S®(p)* gyt = o
Consequently, conditions (3.2) and (3.9) discard the solutions with+32, equation (3.6)
reduces to (3.1), describing single mass

Now it remains to prove that due to these conditions only spin 3/2 remains. The spin
operator is as follows

S(p) =i(S2(p), S*(p), S*4(p)). (3.11)
For S2(p) one can write

S2(p)=3C+ D + L) +L(p) (3.12)
where

L(p)°s = (" — e*T%y;
and

l(p)*s = (y*T° — 46%)%.
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Figure 2. Weight diagram for the representatiod, 2).

Now from y, y* = &%, y* = 0 it follows that
S2 (P = 3G+ Dy

and therefore the original Rarita—Schwinger séirequation is equivalent to the Bhabha
equation corresponding to the irreducible representa@oé) of the de Sitter group.

4. General Rarita—Schwinger equation

The Rarita—Schwinger equation for a particle with the spia n + % has a form (Rarita
and Schwinger 1941)

(puy" —m)y® =0 (4.1)
with an additional condition
yﬂwﬁaz...[x,, =0. (42)

Since symmetrical tensor-bispingr*:-# is also the representatiom + % %) of the de
Sitter group, one can show, similarly to the previous section, that equations (4.1) and (4.2)
are equivalent to the Bhabha equation

m
p;LSMSI/f = §W

with auxiliary condition (4.2).
For symmetrical tensor-bispinor the Lorentz generaftsare

SHY = " x E + I, X %y“y” (4.3)

where/*" are the matrices

n
I’“’:lex~-~x1,_1x1,’”><Ir+1><~-~><1,, (4.4)
r=1

and the vector generatofs*” are given in (3.4).
From the weight diagram of irreducible representatior- % %) (figure 3) one can see

that the spiny = n +% corresponds to the weight poinis= i%. Naturally, there are more



Bhabha relativistic wave equations 4011

o
n+1/2

_________.|____.____.|_________
e R

-n-1/2

Figure 3. Weight diagram for the irreducible representati@n- % %).

spins corresponding to these weight points, therefore we must prove that (4.2) separates
points withh = :i:% and extracts spin = n + %
At the beginning we find the Casimir operators of the Lorentz group
F(p) = 1S (p)S"™ (p)
G(P) = g&uwoS"" (p)S” (p).

If we denote the eigenvalues df(p) and G(p) corresponding to the Lorentz group
representationgé(n + 1)/2,n/2) and(n/2, (n + 1)/2) containing spim + % by

(4.5)

F=21@n®+6n+3

4.6
G =£30n+3) (0
we can giveF (p) and G(p) in the following form:
F(p)=F =2 y"y, =2 g""y,n,
r=1 ) r#p (47)
G(p)=G'T®—I°) yhy,
r=1
whereI™® = 1orir2rs,
The spin operatos?(p) is as follows
S2(p) = (n + D+ ) +1(p) + La(p) (4.8)
where
li(p) = —{ Z(V”’ — %%y, + Z(g"""” - 80"’80””)Vv,)/up
= e (4.9)

n n n
L(p)=—(2n+1) Z so"’aovr + Z g""“ﬂaov,_sovp + Z y""eourFO.
r=1 r#p r=1

Using the relation
V;LSZ(p)““Z"'””vlmvn1//”1“'”" =(n+ %)(n + %))ﬁuﬁ“’”'““” + ([ ]
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where

Y] = —(2n 4 Dy, izt — 2n Z EOMI-EOW yﬂwV’MZN'Vr---Mn

r=2

n n
_ Z(yur _ I*Ogour)yuyvrwuuz...vr---un + Z Vu’FOV;tgou,WMM'"V""M"

r=2 r=2

n
§ L 0 0 U2 ... Vy ooV [y U2 Vp ooV A
+ [g/ r//'p(g U,g pr,uyl/fl Mn2 peeMn __ Vuyv,yvaw 2 Pk x)
r#p>2

%%y, y, et
one can see that fof satisfying

SHp)Y =+ D+ Dy (4.10)
we obtain

I[y] =0. (4.11)

Equation (4.11) is a homogeneous linear equation for the components of the function
vyttt Since the determinant of a given system does not equal zero, we have

J/MWMMZ"'M” =0.
By repeating the reasoning above wijgh, we find from (4.10)
Pt =, (4.12)

We once more clarify the role of additional condition (4.2). Using the expressions of
F(p), G(p) and S%(p), we obtain fory satisfying (4.2)
F(p)yy =Fy
G(p)y = GIoy (4.13)
S2(PIW = (n+ D+ DY + L(p)y.

It is easy to see that the additional condition (4.2) extracts fronthe components
corresponding to the irreducible representatiops+ 1)/2,n/2) and (n/2, (n + 1)/2) of
the Lorentz group. From (4.13) it follows that there remain components with lower spins

n— % .... These components are excludedifp)y = 0. Using (4.9), one can see that if
(4.12) is satisfiedl(p)y = 0. Therefore, conditions (4.2) and (4.12) extract frgnsingle
spinn + 3.

Here we have condition (4.12) demanding single spm% In the case of the Rarita—
Schwinger equation, (4.12) follows from (4.1) and (4.2), therefprenust be the solution
of (4.1). In order to demonstrate that the Rarita—Schwinger equation is equivalent to the
Bhabha equation we must prove thatis an eigenfunction o§%(p).

First we note that whes§%(p) acts on the eigenfunctions of the operatbi®), G(p)
and S?(p), the spin remains unchanged, but the functigns;, which correspond to some
irreducible representatiotk, /) of the Lorentz group are transformed to a superposition of
functions corresponding to the irreducible representati@ns %,l + %), (k + %,l - %),
(k— 3.1+ 3 and & — 3./ — 3). In our case we are interested in the representations
((n +1)/2,n/2) and (n/2, (n + 1)/2) containing the spins = n + 3. If we take into
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consideration the irreducible representations present in the represemtaﬂiogl, %) of the
de Sitter group, we have

SV (nt1)/20/2) = AW ((nj2.(n41)/2) + BY/2.0-1)/2) (4.14)

05
SPP)w2,m10/2 = AV (nr1)/2.0/2) T BY((—1)/2.n/2)-

Since condition (4.2) extracts the irreducible representations 1) /2, n/2) and(n/2, (n+

1)/2), we must prove the existence of the eigenfunctions®¢p) which are superpositions

of the functions corresponding to these representations. From (4.14) it follows that in this
casef = 0. As we have already mention88(p) commutes with spin. Since the maximum
spin in the representationgn — 1)/2,n/2) and (n/2, (n — 1)/2) is equal tos = n — %

B = 0 corresponds to single spin=n + % On the other hand it means thatmust also
satisfy (4.12).

If we denote
V1 = V(v 2n2 (s =n+ 3) V2 = Y2.mtn/2 (s =n+ 3)
then, instead of (4.14), we have
S®pyni=ay2  S®(p)y2 = ayr. (4.15)

From (4.13):G(p)y = G*T'5y we obtain
TP =+y1 T =—yn.

However,I'°T'® = —I"°1"0, therefore,

% =y %, = 1. (4.16)
From (4.15) and (4.16) it follows that
[S%(p). T%Y12=0 (4.17)
therefore one can find common eigenfunctions of the opera®(g) andI'°. Since
puv"
FO — EOMV/J. — [

/pZ
the common eigenfunctions are also the solutions of the Rarita—Schwinger equation (4.1),

which finally proves the equivalence of the Rarita—Schwinger and the Bhabha equation for

H 1
the general spin =n + 3.

5. Bargmann—Wigner equation

The Bargmann—-Wigner equation for a particle with the spian/2 has the form (Bargmann
and Wigner 1948)

(pMyM - m)otlﬁﬂﬂﬂlaz---%x = 0

(Puy" = M)arp, Varpy..a, = 0
(5.1)

(Puv" —M)a,p, Yarar..p, = 0
wherevy,, ., IS symmetrical with respect to the bispinor indiees .. «,,.
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In order to demonstrate the relation with the Bhabha equations we rewrite (5.1) as
follows

LS Dy =my (5.2)
n r=1
(D1 — D)y =0
(D2 — D3)y =0
(5.3)
(Dn—l - Dn)w =0
where
D, = (puyu)r (54)

In what follows we consider it as equation (5.2) with additional conditions (5.3).
Equation (5.2) is written in the standard form (2.2)

(pp.ﬁu —m)y =0
where
1 n
B ="yt (5.5)
n r=1

Now it is easy to verify that the generators
n 1<
SMS [ - Y — r“ 5.6
P =5 ;Zl % (5.6)

generate the de Sitter algebra.

Since (5.2) and (5.3) are equivalent to the original Bargmann-Wigner equation (5.1),
and (5.2) is the Bhabha equation, the connection between the Bargmann-Wigner and the
Bhabha equation has been proved.

The symmetrical field,, ., corresponds to the irreducible representatioy2, n/2)
of the de Sitter group. From the weight diagram (figure 4) one can see th&t°gfl)
eigenvalues: describe the spim/2. Only the eigenvalues = +n/2 describe a single

n/2

Figure 4. Weight diagram for the irreducible representati@i2, n/2).
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spin, other eigenvalue&, = +(n/2 — 1), ..., describe, in addition te = n/2, also lower
spins,s =n/2—-1,....

Next we analyse the effect of additional conditions (5.3). The Bhabha equation
corresponding to (5.25%°(p)y = hyr is

% Z Forl/f — hw (57)
r=1

similarly the additional conditions (5.3) are
oy =r°_1y r=2,...,n. (5.8)

From (5.7) and (5.8) it follows that must be the eigenfunction of dl°,. The eigenvalues

of I'%, are+1. Sincey is symmetrical with respect to bispinor indices, all the eigenvalues

of I'%, must also be equal t¢-1 or —1. Therefores must be equal ta-n/2, which means

that additional conditions (5.8) extract weighits= +n/2 describing single spin = n/2.
Let us consider a spin. The operaf§f(p) can be written as

n 3
S2(p) = Sn(n+1) -} Z Z(ri,rfp)z. (5.9)
r#p i=1
If we denote the common eigenfunctions of &ff, having eigenvalues-1 by ¥+ and,
similarly, the eigenfunctions having eigenvalue$ by v —, we obtain for allr and p

3
Z(Firrip)zwi — wi.

i=1
Therefore, for these eigenfunctions we obtain from (5.9)
2 +_n/n +
spE =" (5+1)v (5.10)

which again proves that the Bargmann—Wigner equation describes a single=spipn2.

In conclusion of this section we consider two special cases. The first, corresponding to
n = 1 is trivial, since it gives us the Dirac equation. The second, corresponding=@
is more interesting. Taking = 2, we obtain the Bhabha equation with the matrices

B = J(E x y* +y" x E). (5.11)
Matrices 8* satisfy the Kemmer—Duffin relation
B B B" + B"B B =g B" + g B". (5.12)
Acting on symmetrical bispinor it gives the 10-component Kemmer—Duffin spin 1 equation.
In then = 2 case we had an additional condition

(ExT°—T%x E)y =0.

It appears that on the solutions of the Kemmer—Duffin equation the latter condition is due
to the relation

(ExT°—TOx EXExT°+T%°x E)=0

being automatically fulfilled.
As we have demonstrated, the well known Bargmann-Wigner equation for a particle
with spinss = n/2 is a Bhabha equation with certain subsidiary conditions.
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6. Conclusions

In this paper we have examined the relativistic wave equations connected with the de Sitter
group. From the mathematical point of view the de Sitter group and Pérgraup are
closely related via contractions and deformations. The Padingaoup is, as is well known,

the most important symmetry group in physics. Due to its close relation with the de Sitter
group one can expect that the latter group is also playing an important role. The de Sitter
group should be treated as an important auxiliary group providing a unified approach to the
equations of relativistic quantum field theory.

From the well known wave equations the Dirac and Kemmer-Duffin equations are
the Bhabha equations connected with certain irreducible representations of the de Sitter
group. In this paper, we demonstrate that two important classes of equations—the Rarita—
Schwinger and the Bargmann-Wigner equations—may be treated as the Bhabha equations
with certain subsidiary conditions. First we examine the Rarita—Schwinger%spﬁmse
that corresponds to the representat@n%). Having the exact form of the corresponding
Bhabha equation, we investigate the role of subsidiary conditions in separating one single
spin % A general proof for the spim + % case is given, which demonstrates that the
Rarita—Schwinger equation corresponds to the irreducible represen(ratier%, %) of the
de Sitter group. We also demonstrate that the Bargmann—Wigner equations correspond to
the irreducible representationis/2, n/2). The role of subsidiary conditions has also been
clarified.

The results given here are not, as we hoped, occasional and there should be more
equations connected with the de Sitter group. In conclusion, it should be mentioned
that the Bhabha equations enable, due to their direct relation with the de Sitter algebra,
some important algebraic transformations which are physically important. One of such
transformations is, for example, the Foldy—Wouthuysen transformation (Pryce 1948, Foldy
and Wouthuysen 1950, Tani 1951, Bracken and Cohen 1969, Loide 1975). For this reason
the investigation of the Bhabha equations and their applications in modern field theory is
of a certain physical importance, clarifying also the role of the de Sitter group in modern
physics.
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