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Abstract. It is a well known fact that the Dirac and Kemmer–Duffin equations are the Bhabha
equations. We use the method based on the de Sitter groupSO(1, 4) to show that the Rarita–
Schwinger and Bargmann–Wigner equations can also be treated as the Bhabha equations with
some subsidiary conditions. This demonstrates that the de Sitter group can be considered as
a significant auxiliary group which provides a unified approach to the equations of relativistic
quantum theory.

1. Introduction

More than 50 years ago Bhabha wrote a paper ‘Relativistic wave equations for the
elementary particles’, where a new class of relativistic wave equations was proposed
(Bhabha 1945). Bhabha introduced a class of multiparticle equations which appeared to
be related to the de Sitter groupSO(1, 4). The same equations were previously introduced
and analysed by Lubanski (1942a, b), but in the current physical literature the equations
connected with the de Sitter group are known as Bhabha equations.

Until the Lubanski and Bhabha works different single particle equations were proposed
and investigated (Dirac 1936, Duffin 1938, Kemmer 1939, Fierz 1939, Rarita and Schwinger
1941). Equations proposed by Lubanski and Bhabha were multiparticle equations. It is
interesting to note that the theory of multiparticle higher-spin equations is still actually
due to the presence of difficulties in higher-spin single particle theories in the presence of
interactions (Velo and Zwanziger 1969a, b). Several attempts have been made to overcome
these difficulties, however, the results obtained have yet to solve the problem (for our efforts
on the subject see, for example, Saaret al 1993, Loideet al 1992, 1994, Saaret al 1994).
In multiparticle theories similar acausality difficulties may be avoided. Moreover, different
new field theoretical models, such as string and supersymmetrical models reduce to the
investigation of higher-spin fields and wave equations.

In the present paper we take another look at the relativistic wave equations proposed
by Bhabha and Lubanski, and discuss their relation with the de Sitter group. It should be
mentioned that Bhabha equations were widely discussed in the 1970s (Krajcik and Nieto
1974, 1975, 1976a, b, 1977). Our treatment here is somewhat different from the previous
ones and is based mainly on the de Sitter group (Kõiv 1969, K̃oiv et al 1970, Loide 1972,
Kõiv and Saar 1974, Loide 1975). We demonstrate that the de Sitter group should be treated
as an important auxiliary group providing a unified approach to the standard equations of
relativistic quantum field theory.
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We discuss the general relativistic wave equation

(i∂µβ
µ −m)ψ(x) = 0 (1.1)

whereψ(x) is some finite-dimensional Lorentz field and the Lorentz generatorsSµν are
expressed via theβµ matrices in the following form:

Sµν = k2[βµ, βν ] (1.2)

wherek is some numerical coefficient.
The general theory of equation (1.1) was rather well developed in the 1940s and it

has been discussed in many textbooks (Corson 1952, Gelfandet al 1963). However, the
application of the general theory to higher-spin particles is not simple and therefore the
higher-spin wave equations proposed so far are not always correct (Loide 1984, 1985). For
this reason some new methods have been proposed which have allowed us to deal with
higher-spin wave equations. In this paper we shall discuss one important special class of
equation (1.1)—the Bhabha relativistic wave equations.

The most important feature of the equations satisfying (1.2) is a very close relation with
the de Sitter groupSO(1, 4). Indeed, if we introduce the operators

Sµ5 = kβµ (1.3)

the generatorsSµ5 andSµν satisfy the commutation relations of the de Sitter algebra:

[Sµ5, Sν5] = Sµν
[Sµν, Sρ5] = gνρSµ5− gµρSν5

[Sµν, Sρσ ] = gνρSµσ + gµσSνρ − gµρSνσ − gνσ Sµρ.
(1.4)

As we shall see later, the wavefunctionψ(x) is connected with the representations
of the de Sitter groupSO(1, 4). We consider only finite-dimensional representations and
demonstrate that besides the Dirac and the Kemmer–Duffin equations which are the Bhabha
equations, also the Rarita–Schwinger and the Bargmann–Wigner equations can be given in
the Bhabha form with some subsidiary conditions. The corresponding functionsψ(x) are
finite-dimensional representations of the de Sitter group.

It is interesting to note that in physics the de Sitter group plays quite an important role,
since in many problems one must use the de Sitter group and its representations, in some
cases in a four-dimensional, in some cases in a five-dimensional form. Here we note some
important mathematical results, which connect Poincaré and de Sitter groups—in the theory
of contractions and deformations of groups and algebras it has been proved that contraction
of the de Sitter group is the Poincaré group (Inon̈u and Wigner 1953) and from deformations
of the Poincaŕe group one obtains the de Sitter group (Levy-Nahas 1967, Lyakhovsky 1969).
From these mathematical results it follows that two groups—the Poincaré group, which is
the most important symmetry group in physics, and the de Sitter group are very closely
related. The physical origin of such relations is not yet clear, but we hope it will get some
clarification in the future.

The paper is organized as follows. In section 2, the general structure of Bhabha equations
is clarified. In sections 3 and 4, the Rarita–Schwinger equation and its Bhabha structure is
studied. In section 5, the Bargmann–Wigner equation is discussed.

2. Mass and spin of the Bhabha equations

We start with a few words about finite-dimensional representations of the de Sitter group
(see, for example, Antoine and Speiser, 1964a, b). Each finite-dimensional representation
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Figure 1. Weight diagram for the representation(n1, n2).

can be characterized by two integers or half-odd integers(n1, n2), satisfyingn1 > n2. To
each representation(n1, n2) corresponds the octagonal weight diagram (figure 1).

The weights (h, σ ) are determined from the eigenvalue problem of Cartan subalgebra:

S05ψ = hψ
iS12ψ = σψ. (2.1)

The components of each weight(h, σ )−h andσ may both have valuesn1, n1−1, . . . ,−n1+
1,−n1, but only such values forh andσ are allowed, which give the weight point inside
the octagonal weight diagram. The edge points of the weight diagram are single, the inner
points are in general multiple. The multiplicity of weight points can be calculated (Kõiv
1967), but for lower representations the multiplicity of weight points can be found from the
simple symmetry considerations of the weight diagram—the weight points (h, σ ) and (σ, h)
have the same multiplicity.

Next we apply the results to the Bhabha equation (1.1) corresponding to some irreducible
representation(n1, n2) of the de Sitter group. For simplicity we use further the momentum
representation

(pµβ
µ −m)ψ(p) = 0. (2.2)

Equation (2.2), in general, describes states with different mass and spin. In order to establish
the mass and spin spectrum of a given equation we introduce new operators

Sµ5(p) = εµνSν5

Sµν(p) = εµρενσ Sρσ
(2.3)

where

ε0
µ = pµ√

p2

and

gσρεµρε
ν
σ = gµν.√

p2 is the mass of a given state.
It is easy to verify that the introduced generators also satisfy the commutation relations

of the de Sitter group (1.4).
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SinceSµ5 = kβµ, one can write (2.2) as

(pµS
µ5− km)ψ = 0 (2.4)

and by using (2.3), it turns into the eigenvalue problem

S05(p)ψ = hψ (2.5)

where

h = km√
p2
. (2.6)

The spin projection is determined from the eigenvalue problem

iS12(p)ψ = σψ. (2.7)

In the case of a finite-dimensional irreducible representation(n1, n2) one can obtain the
mass and spin projection spectrum. The mass of states is determined from√

p2 = km

h
. (2.8)

Naturally,h = 0 is excluded due tom 6= 0. In general,√
p2 = km

n1
,
km

n1− 1
, . . . ,

−km
n1

σ = n1, n1− 1, . . . ,−n1.

From the given results it follows that in general the Bhabha equation describes particles
with several mass and spin. If one single state with a given mass and spin is needed, some
auxiliary conditions must be applied.

From the well known equations, the Dirac equation and Kemmer–Duffin equations are
Bhabha equations. The Dirac equation corresponds to the representation( 1

2,
1
2). Spin 1

2

is described by the nonzero eigenvaluesh = ± 1
2. The Kemmer–Duffin spin 0 equation

corresponds to the representation(1, 0), spin 0 is described by the nonzero eigenvalues
h = ±1. The Kemmer–Duffin spin 1 equation corresponds to the representation(1, 1) and
now spin 1 is described by the eigenvaluesh = ±1.

In the following sections we will show that the Rarita–Schwinger and the Bargmann–
Wigner equations are also connected with the de Sitter group and can be treated as Bhabha
equations with some auxiliary conditions.

3. Rarita–Schwinger spin 3
2 equation

The Rarita–Schwinger equation for a particle with spins = 3
2 has a form (Rarita and

Schwinger 1941)

(pµγ
µ −m)ψα = 0 (3.1)

with the additional condition

γαψ
α = 0. (3.2)

Here ψα is a vector-bispinor field. Since vector-bispinor is also the irreducible
representation( 3

2,
1
2) of the de Sitter group, one can supplement the Lorentz generators

Sµν with generatorsSµ5 generating the de Sitter algebra.
For a vector-bispinor the Lorentz generatorsSµν are

Sµν = Iµν × E + I4× 1
2γ

µγ ν (3.3)
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whereE andI4 are unit operators acting on spinor and vector indices. The generatorsIµν

are

(Iµν)αβ = gµαgνβ − gναgµβ. (3.4)

de Sitter generatorsSµ5 may be repsesented in the form

(Sµ5)αβ = 1
2[γ µgαβ − (1+ i)gµαγβ − (1− i)γ αgµβ + γ αγ µγβ ]. (3.5)

Now we will prove that the Rarita–Schwinger equation is equivalent to the Bhabha
equation

pµS
µ5ψ = m

2
ψ (3.6)

with an additional condition (3.2). From figure 2 we can see that there are nonzero
eigenvaluesh = ± 1

2 and h = ± 3
2. The eigenvaluesh = ± 1

2 describe states with spin
3
2 and spin 1

2. The mass of the corresponding states is equal tom. Eigenvaluesh = ± 3
2

describe spin1
2 with the massm/3.

Equation (3.6) is equivalent to the eigenvalue problem

Sµ5(p)ψ = hψ (3.7)

where

(S05(p))αβ = 1
20

0(gαβ − γ αγβ)+ 1
2(1− i)(ε0αγβ − γ αε0

β) (3.8)

and0µ = εµνγ ν .
Let us consider the eigenfunctionψ which satisfies (3.2):γαψα = 0. From

ε0
αS

05(p)αβ =
i

2
(ε0

β0
0− γβ)

we obtain
i

2
00(ε0

αψ
α) = h(ε0

αψ
α). (3.9)

Since0µ satisfy{0µ, 0ν} = 2gµν , eigenvalues of00 are±1. From (3.9) it therefore follows
that ε0

αψ
α = 0, i.e.

pµψ
µ = 0. (3.10)

For the wavefunctionψ satisfying (3.2) and (3.10) from (3.7) we obtain that

S05(p)αβψ
β = 1

20
0ψα.

Consequently, conditions (3.2) and (3.9) discard the solutions withh = ± 3
2, equation (3.6)

reduces to (3.1), describing single massm.
Now it remains to prove that due to these conditions only spin 3/2 remains. The spin

operator is as follows

S(p) = i(S23(p), S31(p), S12(p)). (3.11)

For S2(p) one can write

S2(p) = 3
2(

3
2 + 1)+ l1(p)+ l2(p) (3.12)

where

l1(p)
α
β = −(γ α − ε0α00)γβ

and

l2(p)
α
β = (γ α00− 4ε0α)ε0

β.
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Figure 2. Weight diagram for the representation( 3
2 ,

1
2).

Now from γµψ
µ = ε0

µψ
µ = 0 it follows that

S2(p)ψ = 3
2(

3
2 + 1)ψ

and therefore the original Rarita–Schwinger spin3
2 equation is equivalent to the Bhabha

equation corresponding to the irreducible representation( 3
2,

1
2) of the de Sitter group.

4. General Rarita–Schwinger equation

The Rarita–Schwinger equation for a particle with the spins = n + 1
2 has a form (Rarita

and Schwinger 1941)

(pµγ
µ −m)ψα1...αn = 0 (4.1)

with an additional condition

γβψ
βα2...αn = 0. (4.2)

Since symmetrical tensor-bispinorψα1...αn is also the representation(n + 1
2,

1
2) of the de

Sitter group, one can show, similarly to the previous section, that equations (4.1) and (4.2)
are equivalent to the Bhabha equation

pµS
µ5ψ = m

2
ψ

with auxiliary condition (4.2).
For symmetrical tensor-bispinor the Lorentz generatorsSµν are

Sµν = Iµν × E + I4n × 1
2γ

µγ ν (4.3)

whereIµν are the matrices

Iµν =
n∑
r=1

I1× · · · × Ir−1× Irµν × Ir+1× · · · × In (4.4)

and the vector generatorsIrµν are given in (3.4).
From the weight diagram of irreducible representation(n+ 1

2,
1
2) (figure 3) one can see

that the spins = n+ 1
2 corresponds to the weight pointsh = ± 1

2. Naturally, there are more
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spins corresponding to these weight points, therefore we must prove that (4.2) separates
points withh = ± 1

2 and extracts spins = n+ 1
2.

At the beginning we find the Casimir operators of the Lorentz group

F(p) = 1
4Sµν(p)S

µν(p)

G(p) = 1
8εµνρσ S

µν(p)Sρσ (p).
(4.5)

If we denote the eigenvalues ofF(p) and G(p) corresponding to the Lorentz group
representations((n+ 1)/2, n/2) and(n/2, (n+ 1)/2) containing spinn+ 1

2 by

F = 1
4(2n

2+ 6n+ 3)

G± = ± 1
2(n+ 3

2)
(4.6)

we can giveF(p) andG(p) in the following form:

F(p) = F − 2
n∑
r=1

γ µr γνr − 2
n∑
r 6=p

gµrµpγνr γνp

G(p) = G+05− 1
20

5
n∑
r=1

γ µr γνr

(4.7)

where05 = 00010203.
The spin operatorS2(p) is as follows

S2(p) = (n+ 1
2)(n+ 3

2)+ l1(p)+ l2(p) (4.8)

where

l1(p) = −
{ n∑
r=1

(γ µr − 00ε0µr )γνr +
n∑
r 6=p
(gµrµp − ε0µr ε0µp )γνr γνp

}

l2(p) = −(2n+ 1)
n∑
r=1

ε0µr ε0
νr +

n∑
r 6=p

gµrµpε0
νr ε

0
νp +

n∑
r=1

γ µr ε0
νr 0

0.

(4.9)

Using the relation

γµS
2(p)µµ2...µn

ν1...νn
ψν1...νn = (n+ 1

2)(n+ 3
2)γµψ

µµ2...µn + l[ψ ]µ1...µn
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where

l[ψ ] = −(2n+ 1)γµψ
µµ2...µn − 2n

n∑
r>2

ε0µr ε0
νr γµψ

µµ2...νr ...µn

−
n∑
r>2

(γ µr − 00ε0µr )γµγνrψ
µµ2...νr ...µn +

n∑
r>2

γ µr00γµε
0
νrψ

µµ2...νr ...µn

+
n∑

r 6=p>2

[gµrµp (ε0
νr ε

0
νpγµψ

µµ2...νr ...νp...µn − γµγνr γνpψµµ2...νr ...νp...µn)

+ε0µr ε0µpγµγνr γνpψ
µµ2...νr ...νp...µn ]

one can see that forψ satisfying

S2(p)ψ = (n+ 1
2)(n+ 3

2)ψ (4.10)

we obtain

l[ψ ] = 0. (4.11)

Equation (4.11) is a homogeneous linear equation for the components of the function
γµψ

µµ2...µn . Since the determinant of a given system does not equal zero, we have

γµψ
µµ2...µn = 0.

By repeating the reasoning above withpµ, we find from (4.10)

pµψ
µµ2...µn = 0. (4.12)

We once more clarify the role of additional condition (4.2). Using the expressions of
F(p), G(p) andS2(p), we obtain forψ satisfying (4.2)

F(p)ψ = Fψ
G(p)ψ = G+05ψ

S2(p)ψ = (n+ 1
2)(n+ 3

2)ψ + l2(p)ψ.
(4.13)

It is easy to see that the additional condition (4.2) extracts fromψ the components
corresponding to the irreducible representations((n + 1)/2, n/2) and (n/2, (n + 1)/2) of
the Lorentz group. From (4.13) it follows that there remain components with lower spins
n− 1

2, . . .. These components are excluded ifl2(p)ψ = 0. Using (4.9), one can see that if
(4.12) is satisfied,l2(p)ψ = 0. Therefore, conditions (4.2) and (4.12) extract fromψ single
spin n+ 1

2.
Here we have condition (4.12) demanding single spinn+ 1

2. In the case of the Rarita–
Schwinger equation, (4.12) follows from (4.1) and (4.2), thereforeψ must be the solution
of (4.1). In order to demonstrate that the Rarita–Schwinger equation is equivalent to the
Bhabha equation we must prove thatψ is an eigenfunction ofS05(p).

First we note that whenS05(p) acts on the eigenfunctions of the operatorsF(p), G(p)
andS2(p), the spin remains unchanged, but the functionsψ(k,l) which correspond to some
irreducible representation(k, l) of the Lorentz group are transformed to a superposition of
functions corresponding to the irreducible representations(k + 1

2, l + 1
2), (k + 1

2, l − 1
2),

(k − 1
2, l + 1

2) and (k − 1
2, l − 1

2). In our case we are interested in the representations
((n + 1)/2, n/2) and (n/2, (n + 1)/2) containing the spins = n + 1

2. If we take into
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consideration the irreducible representations present in the representation(n+ 1
2,

1
2) of the

de Sitter group, we have

S05(p)ψ((n+1)/2,n/2) = αψ((n/2,(n+1)/2) + βψ(n/2,(n−1)/2)

S05(p)ψ(n/2,(n+1)/2) = αψ((n+1)/2,n/2) + βψ((n−1)/2,n/2).
(4.14)

Since condition (4.2) extracts the irreducible representations((n+1)/2, n/2) and(n/2, (n+
1)/2), we must prove the existence of the eigenfunctions ofS05(p) which are superpositions
of the functions corresponding to these representations. From (4.14) it follows that in this
caseβ = 0. As we have already mentionedS05(p) commutes with spin. Since the maximum
spin in the representations((n − 1)/2, n/2) and (n/2, (n − 1)/2) is equal tos = n − 1

2,
β = 0 corresponds to single spins = n+ 1

2. On the other hand it means thatψ must also
satisfy (4.12).

If we denote

ψ1 = ψ((n+1)/2,n/2)(s = n+ 1
2) ψ2 = ψ(n/2,(n+1)/2)(s = n+ 1

2)

then, instead of (4.14), we have

S05(p)ψ1 = αψ2 S05(p)ψ2 = αψ1. (4.15)

From (4.13):G(p)ψ = G+05ψ we obtain

05ψ1 = +ψ1 05ψ2 = −ψ2.

However,0005 = −0500, therefore,

00ψ1 = ψ2 00ψ2 = ψ1. (4.16)

From (4.15) and (4.16) it follows that

[S05(p), 00]ψ1,2 = 0 (4.17)

therefore one can find common eigenfunctions of the operatorsS05(p) and00. Since

00 = ε0
µγ

µ = pµγ
µ√

p2

the common eigenfunctions are also the solutions of the Rarita–Schwinger equation (4.1),
which finally proves the equivalence of the Rarita–Schwinger and the Bhabha equation for
the general spins = n+ 1

2.

5. Bargmann–Wigner equation

The Bargmann–Wigner equation for a particle with the spins = n/2 has the form (Bargmann
and Wigner 1948)

(pµγ
µ −m)α1β1ψβ1α2...αn = 0

(pµγ
µ −m)α2β2ψα1β2...αn = 0

...

(pµγ
µ −m)αnβnψα1α2...βn = 0

(5.1)

whereψα1...αn is symmetrical with respect to the bispinor indicesα1 . . . αn.
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In order to demonstrate the relation with the Bhabha equations we rewrite (5.1) as
follows

1

n

n∑
r=1

Drψ = mψ (5.2)

(D1−D2)ψ = 0

(D2−D3)ψ = 0

...

(Dn−1−Dn)ψ = 0

(5.3)

where

Dr = (pµγ µ)r . (5.4)

In what follows we consider it as equation (5.2) with additional conditions (5.3).
Equation (5.2) is written in the standard form (2.2)

(pµβ
µ −m)ψ = 0

where

βµ = 1

n

n∑
r=1

γr
µ. (5.5)

Now it is easy to verify that the generators

Sµ5 = n

2
βµ = 1

2

n∑
r=1

γr
µ (5.6)

generate the de Sitter algebra.
Since (5.2) and (5.3) are equivalent to the original Bargmann–Wigner equation (5.1),

and (5.2) is the Bhabha equation, the connection between the Bargmann–Wigner and the
Bhabha equation has been proved.

The symmetrical fieldψα1...αn corresponds to the irreducible representation(n/2, n/2)
of the de Sitter group. From the weight diagram (figure 4) one can see that allS05(p)

eigenvaluesh describe the spinn/2. Only the eigenvaluesh = ±n/2 describe a single

h

σ

n/2

n/2–n/2

–n/2

Figure 4. Weight diagram for the irreducible representation(n/2, n/2).
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spin, other eigenvalues,h = ±(n/2− 1), . . ., describe, in addition tos = n/2, also lower
spins,s = n/2− 1, . . ..

Next we analyse the effect of additional conditions (5.3). The Bhabha equation
corresponding to (5.2)S05(p)ψ = hψ is

1
2

n∑
r=1

00
rψ = hψ (5.7)

similarly the additional conditions (5.3) are

00
rψ = 00

r−1ψ r = 2, . . . , n. (5.8)

From (5.7) and (5.8) it follows thatψ must be the eigenfunction of all00
r . The eigenvalues

of 00
r are±1. Sinceψ is symmetrical with respect ton bispinor indices, all the eigenvalues

of 00
r must also be equal to+1 or−1. Therefore,h must be equal to±n/2, which means

that additional conditions (5.8) extract weightsh = ±n/2 describing single spins = n/2.
Let us consider a spin. The operatorS2(p) can be written as

S2(p) = 3
8n(n+ 1)− 1

8

n∑
r 6=p

3∑
i=1

(0ir0
i
p)

2. (5.9)

If we denote the common eigenfunctions of all00
r having eigenvalues+1 by ψ+ and,

similarly, the eigenfunctions having eigenvalues−1 by ψ−, we obtain for allr andp

3∑
i=1

(0ir0
i
p)

2ψ± = ψ±.

Therefore, for these eigenfunctions we obtain from (5.9)

S2(p)ψ± = n

2

(n
2
+ 1

)
ψ± (5.10)

which again proves that the Bargmann–Wigner equation describes a single spins = n/2.
In conclusion of this section we consider two special cases. The first, corresponding to

n = 1 is trivial, since it gives us the Dirac equation. The second, corresponding ton = 2
is more interesting. Takingn = 2, we obtain the Bhabha equation with the matrices

βµ = 1
2(E × γ µ + γ µ × E). (5.11)

Matricesβµ satisfy the Kemmer–Duffin relation

βµβρβν + βνβρβµ = gµρβν + gρµβµ. (5.12)

Acting on symmetrical bispinor it gives the 10-component Kemmer–Duffin spin 1 equation.
In the n = 2 case we had an additional condition

(E × 00− 00× E)ψ = 0.

It appears that on the solutions of the Kemmer–Duffin equation the latter condition is due
to the relation

(E × 00− 00× E)(E × 00+ 00× E) = 0

being automatically fulfilled.
As we have demonstrated, the well known Bargmann–Wigner equation for a particle

with spinss = n/2 is a Bhabha equation with certain subsidiary conditions.
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6. Conclusions

In this paper we have examined the relativistic wave equations connected with the de Sitter
group. From the mathematical point of view the de Sitter group and Poincaré group are
closely related via contractions and deformations. The Poincaré group is, as is well known,
the most important symmetry group in physics. Due to its close relation with the de Sitter
group one can expect that the latter group is also playing an important role. The de Sitter
group should be treated as an important auxiliary group providing a unified approach to the
equations of relativistic quantum field theory.

From the well known wave equations the Dirac and Kemmer–Duffin equations are
the Bhabha equations connected with certain irreducible representations of the de Sitter
group. In this paper, we demonstrate that two important classes of equations—the Rarita–
Schwinger and the Bargmann–Wigner equations—may be treated as the Bhabha equations
with certain subsidiary conditions. First we examine the Rarita–Schwinger spin3

2 case
that corresponds to the representation( 3

2,
1
2). Having the exact form of the corresponding

Bhabha equation, we investigate the role of subsidiary conditions in separating one single
spin 3

2. A general proof for the spinn + 1
2 case is given, which demonstrates that the

Rarita–Schwinger equation corresponds to the irreducible representation(n + 1
2,

1
2) of the

de Sitter group. We also demonstrate that the Bargmann–Wigner equations correspond to
the irreducible representations(n/2, n/2). The role of subsidiary conditions has also been
clarified.

The results given here are not, as we hoped, occasional and there should be more
equations connected with the de Sitter group. In conclusion, it should be mentioned
that the Bhabha equations enable, due to their direct relation with the de Sitter algebra,
some important algebraic transformations which are physically important. One of such
transformations is, for example, the Foldy–Wouthuysen transformation (Pryce 1948, Foldy
and Wouthuysen 1950, Tani 1951, Bracken and Cohen 1969, Loide 1975). For this reason
the investigation of the Bhabha equations and their applications in modern field theory is
of a certain physical importance, clarifying also the role of the de Sitter group in modern
physics.
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Kõiv M and Saar R 1974 TheO1,4 type relativistically invariant equation for representationO1,4[(2n+1)/2, 1/2]

Preprint FI-33 Tartu
Levy-Nahas M 1967J. Math. Phys.8 1211
Loide R-K 1972 On some representations of inhomogeneous groupsPreprint FAI-19 Tartu
——1975Teor. Mat. Fiz.23 42
——1984J. Phys. A: Math. Gen.17 2535
——1985J. Phys. A: Math. Gen.18 2833
Loide R-K, Ots I and Saar R 1992Proc. Estonian Acad. Sci. Phys. Math.41 270
——1994Proc. Estonian Acad. Sci. Phys. Math.43 25
Lubanski J K 1942aPhysica9 310
——1942bPhysica9 345
Lyakhovsky V 1969Commun. Math. Phys.14 70
Pryce M H L 1948Proc. R. Soc.195A 62
Rarita W and Schwinger J 1941Phys. Rev.60 61
Saar R, K̃oiv M, Ots I and Loide R-K 1993J. Math. Phys.34 2866
Saar R, Ots I and Loide R-K 1994Hadronic J.17 287
Tani S 1951Prog. Theor. Phys.6 267
Velo G and Zwanziger D 1969aPhys. Rev.186 1337
——1969bPhys. Rev.188 2218


